
WebAuthn Example Application

WebAuthn is a web standard that enables secure, passwordless authentication using public-key
cryptography. It replaces traditional passwords with cryptographic credentials stored in
authenticators like hardware keys, biometrics, or platform security modules.

WebAuthn terminology

• Relying Party: The server or web application that initiates registration/authentication

• Client Platform: The browser or operating system that mediates between RP and authenticator

• Authenticator: The device or module that generates and stores credentials (e.g. TPM, USB
key)

• User verification method (UVM): This refers to a biometric (eg: finger print), a PIN or
password, a Touch, gesture or presence check.

It is important to note the following:

WebAuthn credentials are bound to the authenticator (e.g. your phone, security key, or
platform authenticator like Windows Hello), not to your geographic location. So:

• You can access the same website from any location, as long as you have access to
the authenticator that holds your credential.

• The RP ID (relying party identifier) ensures the credential is scoped to the domain
(e.g. example.com), not the IP address or physical location.

By default, credentials are not portable across devices. If you register on your laptop in
London, that credential won't be available on your phone in New York unless:

• You use a cross-device authenticator, like a roaming security key (YubiKey, etc.).
• Or you use a synchronized platform authenticator, such as:

• Passkeys on iCloud Keychain (Apple)
• Google Password Manager passkeys
• Windows Hello with cloud sync (if supported)

These allow the same credential to be used across multiple devices, even in different
locations.

The above is an annoyance when you have 2 or more browsers accessing the same website
using the same user id on the same device and not using a cross-device authenticator or a
synchronised platform authenticator.

To overcome this problem, in this example, the devices authenticators GUID is used to qualify
the website and the user id. The GUID is stored on the RP with the Credential ID/Public Key
associated with the website (rpHost) and the user ID.

WebAuthn has many features and can be coded in many different ways to ensure security and
phishing-resistant way to authenticate users. For example, authentication can be done on the
client side (browser) or on the Relying Party. It is however recommended to authenticate on the
RP which this example does.

This example uses raw javascript and PHP code. No libraries eg. no cbor decoder.

When you register a User verification method; you will sometimes be asked to re–submit it: this
is an annoyance but not a problem. This can be caused by the authenticator wanting
confirmation.

WebAuthn Example Application

Flow
Client Platform (PC, smartphone etc) Relying Party(RP: Server)

User enters an ID (email address in this example)

The client request a Challenge and Credential ID
using User ID

• Creates a 32 byte Challenge.
• Store the Challenge in a webauthn depository (eg

MYSQL table)
• Send the Challenge and Credential ID (if it

exists) back to the client

If no Credential ID → (1st time registration)

• Using the Challenge ask the Authenticator to
generate a private / public key and a Credential ID

• Send the User ID, Challenge, public key and
credential ID to the RP.

• Note: the credential ID is like a look up to the
private key

• Check that the Challenge is the same as the one
previously sent to the client.

• Store the Public Key and Credential ID in the
depository and send back website successfully
registered

If the Challenge is rejected – abort login

Otherwise ok for website to continue

If Credential ID received ->

• if credential ID does not exist in the Authenticator:
abort login

• if credential ID does exist get the following values
from the Authenticator and send them to the RP:
User ID, Challenge, Signature, ClientDataJSON,
AuthenticatorData

• Check that the Challenge is the same as the one
previously sent to the client.

• Get the Public Key stored in the depository.
• Using openssl: validate the Public Key against

those values received from the client. (eg
Signature, etc)

• respond back to the client accordingly.

If a negative response from the RP – abort login

If positive then its OK for the website to continue

WebAuthn Example Application

MySQL Table Structure

CREATE TABLE `credentials` (

 `id` int NOT NULL,

 `user_id` varchar(255) NOT NULL,

 `rphost` varchar(253) NOT NULL,

 `aaguid` char(32) DEFAULT 'unknown',

 `challenge` varbinary(32) NOT NULL,

 `credential_id` varbinary(1023) NOT NULL,

 `signaturecount` bigint UNSIGNED NOT NULL DEFAULT '0',

 `public_key` text NOT NULL,

 `created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 `updated_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP

)

ALTER TABLE `credentials`

 ADD PRIMARY KEY (`id`);

ALTER TABLE `credentials`

 MODIFY `id` int NOT NULL AUTO_INCREMENT;

	WebAuthn Example Application
	Flow

